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1 Classifiers

A classifier is a function f that maps input feature vectors x ∈ X to output class labels y ∈ {1, . . . , C},
where X is the feature space. We will typically assume X = IRD or X = {0, 1}D, i.e., that the feature
vector is a vector of D real numbers or D binary bits, but in general, we may mix discrete and continuous
features. We assume the class labels are unordered (categorical) and mutually exclusive. (If we allow an
input to belong to multiple classes, this is called a multi-label problem.) Our goal is to learn f from a
labeled training set of N input-output pairs, (xn, yn), n = 1 : N ; this is an example of supervised

learning.
We will focus our attention on probabilistic classifiers, i.e., methods that return p(y|x). (We will discuss

the advantages of having probabilities below.) There are two main ways to do this. The first is to directly
learn the function that computes the class posterior p(y|x): this is called a discriminative model, since
it discriminates between different classes given the input. The alternative is to learn the class-conditional

density p(x|y) for each value of y, and to learn the class priors p(y); then one can apply Bayes rule to
compute the posterior

p(y|x) =
p(x, y)

p(x)
=

p(x|y)p(y)
∑C

y′=1 p(x|y′)p(y′)
(1)

This is called a generative model, since it specifies a way to generate the feature vectors x for each possible
class y. In this chapter, we will focus on generative models; we will consider discriminative models later.

A simpler alternative to generative and discriminative learning is to dispense with probabilities altogether,
and to learn a function, called a discriminant function, that directly maps inputs to outputs e.g.,

f(x) = ŷ(x) = argmax
y

p(y|x) (2)

This is perhaps the most popular approach to classification, but below we list some advantages of having
the full posterior probability over class labels instead of just an estimate of the most probable class.

2 Advantages of classifiers with probabilistic output *

Reject option With a probability distribution, we can tell if we are uncertain about our prediction, and if
so, we can refuse to classify it, and pass the case on to a human expert. (This is important in some
medical decision making tasks.) This is called choosing the “reject option”; we will study it later when
we come to decision theory. With a discriminant function, we have no idea of the confidence of our
answer.

Changing utility functions We can combine the probability distribution with a utility function to min-
imize our risk. Although we can learn a discriminant to directly minimize our risk, the advantage of
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separately learning p(y|x) and then adding on utilities is that, if our utility function changes, we do
not need to re-learn p(y|x).

Compensating for class imbalance Consider a binary classification task in which one class is much rarer
than the other e.g., cancer vs normal, where only 1 in every 1,000 examples is cancerous. If we train
a classifier directly on the imbalanced data, it can trivially get 99.9% accuracy by simply learning
the rule f(x) = normal, i.e., saying “normal” no matter what the input is. To avoid this degenerate
solution, we can train on a balanced training set. Call the resulting model pbal(y|x). At run time, we
can modify this to work on the true data distribution as follows. By Bayes rule

pbal(y|x) ∝ p(x|y)pbal(y) (3)

Hence

ptrue(y|x) ∝ p(x|y)ptrue(y) ∝
pbal(y|x)

pbal(y)
ptrue(y) (4)

Converting a posterior into a likelihood in this way is called the scaled likelihood trick.

Combining models Suppose we have two kinds of feature vectors, x1 and x2 (e.g., X-ray images and blood
tests). Rather than building a large monolithic model, it might be more practical to learn two separate
classifiers, p(y|x1) and p(y|x2) and then to combine them. The key to combining outputs from different
informations sources (which is called sensor fusion) is to know how reliable each source is. This is
precisely what the posterior probabilities tell us. A simple way to combine the systems is to assume
the features are conditionally independent given the class labels:

p(x1, x2|y) = p(x1|y)p(x2|y) (5)

This is the Naive Bayes assumption which we shall explain in more detail below. Given this assumption,
we can use the scaled likelihood trick as follows

p(y|x1, x2) ∝ p(x1, x2|y)p(y) (6)

∝ p(x1|y)p(x2|y)p(y) (7)

∝
p(y|x1)

p(y)

p(y|x2)

p(y)
p(y) (8)

∝
p(y|x1)p(y|x2)

p(y)
(9)

3 Generative classifiers

3.1 Class prior

If we assume that the number of classes C is small, then we can easily estimate the class prior p(y) by
treating y as a multinomial random variable:

p(y = c|π) = πc (10)

where π is a vector of class probabilities. The MLE is simply

π̂MLE
c =

∑N

n=1 I(yn = c)

N
=

Nc

N
(11)

where Nc is the number of training examples that have class label c. If we use a Dirichlet prior, the posterior
mean estimate is

π̂mean
c =

Nc + αc

N + α
(12)
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Figure 1: Univariate Gaussian class-conditional distributions for two features (height and weight) and two
classes (male and female).

If the prior is uniform, αc = 1, we get

π̂mean
c =

Nc + 1

N + C
(13)

Alternatively, if we use αc = 2, the MAP estimate is

π̂MAP
c =

Nc + 1

N + C
(14)

As usual, this avoids the problems with zero counts that the MLE suffers from.

3.2 Class conditional densities

The main issue is how to specify the class conditional density p(x|y). The usual assumption is that the pa-
rameters of each such conditional distribution are independent. Hence we can estimate the p(x|y) separately
for each value of y, so we just have so solve C separate density estimation problems.

If x ∈ IR is a 1-dimensional scalar feature, such as height or weight, one possibility would be to use a
Gaussian class-conditional density:

p(x|y = c, θc) = N (x|µc, Σc) (15)

where the mean and variance depend on the class c (see Figure 1). Similarly, if x ∈ {0, 1} is a 1-dimensional
binary feature, then we can use a Bernoulli class-conditional density:

p(x|y = c, θc) = θx
c (1 − θc)

1−x (16)

If x ∈ {1, . . . , K}, we can use a multinomial class-conditional density

p(x|y = c, θc) =
K
∏

k=1

θ
I(x=k)
ck (17)

Below we discuss one way to extend these models to handle multiple features, xi, for i = 1 : D.
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3.3 The naive Bayes assumption

The naive Bayes or idiot Bayes assumption is that all the features are conditionally independent given
the class label:

p(x|y = c) =

D
∏

i=1

p(xi|y = c) (18)

Even though this is usually false (since features are usually dependent), the resulting model is easy to fit
and works surprisingly well. In the case of Gaussian data, we get

p(x|y = c, θc) =

D
∏

i=1

N (xi|µic, σic) (19)

so we just have to estimate C ×D separate Gaussian parameters, µic, σic. In the case of binary data, we get

p(x|y = c, θc) =

D
∏

i=1

Be(xi|θic) (20)

so we just have to estimate C × D separate Bernoulli parameters, θic. We discuss the case of binary (and
K-ary) data in more detail below.

3.4 Plug-in classifier

The full Bayesian posterior predictive density on the class label Y given an input X and the training data
D is given by

p(y = c|x, D) ∝

∫ ∫

p(x|y = c, θc)p(y = c|π)p(θc)p(π)dθcdπ (21)

This is often approximated using a plug-in approximation as follows

p(y = c|x, D) ≈ p(y = c|x, θ̂, π̂) ∝ p(x|y = c, θ̂c)p(y = c|π̂) (22)

In the case where all variables have multinomial distributions with Dirichlet priors, if we use the posterior
mean as our parameter estimate, then the plug-in approach will be exact.

4 Naive Bayes for document classifcation

Suppose we want to classify a document into one of C classes (e.g., C = 2 and the classes are “spam” and
“non-spam”). A very simple representation, called the bag of words model, is to ignore word ordering
and to just count the number of times each word occurs. Suppose there are D words in the language (we
can always enforce this by mapping all words outside the vocabularly into a special symbol such as unk,
for unknown word). Then a document can be represented as a p-vector of counts (a word frequency

histogram). Let X = k mean the word occurs exactly k times, for k = 0 : K − 1; for simplicity, we will
say this word has count k. (If the word occurs more than K − 1 times in a document, we will just treat
it as if it occured K − 1 times; here K is a user chosen upper bound.) In this case, we can represent the
class-conditional density as a product of multinomials:

p(x|Y = c, θ) =

D
∏

i=1

K
∏

k=1

θ
I(xi=k)
ick (23)

where θick = p(Xi = k|Y = c) is the probability of observing the i’th word having count k given that the

class is c. (Obviously
∑K

k=1 θick = 1 for all i, c.) The intuition behind this is that the number of times a
word occurs in a document may provide some information abour what type of document it is. (A better
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Figure 2: Training data for document classification visualized using matlab’s spy command, which is useful
for sparse matrices. A black dot in row i column j means document i contains word j at least once.

representation is to use a Poisson distribution on the word counts, but this is beyond the scope of this
chapter.)

An even simpler representation is to just to represent whether the word occurs or not, and not worry about
how many times. Let us call this binary feature vector x. In this case, we can represent the class-conditional
densities as a product of Bernoulli distributions:

p(x|Y = c, θ) =

D
∏

i=1

θxi

ic (1 − θic)
1−xi (24)

where θic is the probability word i occurs in class c, xi = 1 means word i is present, and xi = 0 otherwise.
See for example Figure 2 for binary count data, and Figure 3 for the class-conditional densities. Despite the
simplicity of this model, it works surprisingly well, and is the basis of most email spam filters.

4.1 Parameter estimation

The MLE estimate of the parameters is gotten by normalizing the counts

θ̂MLE
ick =

Nick
∑

k′ Nick′

(25)

where Nick is the number of times word i occurs exactly k times in documents of class c:

Nick =
∑

n:yn=c

I(#n,i = k) (26)

where #n,i is the number of times word i occurs in document n:

#n,i =
∑

w∈n

I(w = i) (27)

5



0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1
word freq for class 1

0 100 200 300 400 500 600 700
0

0.2

0.4

0.6

0.8

1
word freq for class 2

Figure 3: Class conditional densities p(xi = 1|c) for two document classes.

So #ni ∈ {0, . . . , K − 1} (we truncate the count at K − 1). To avoid zero counts (e.g., of rare words), we
can use a Dirichlet prior; then the posterior mean becomes

θ̂mean
ick =

Nick + αk
∑

k′ Nick′ + αk′

(28)

Typically we use αk = 1.
In the simpler binary model, this becomes

θ̂ic =
Nic + 1

Nc + 2
(29)

where Nic is the number of times word i occurs (one or more times) in documents of class c and Nc is the
number of documents of class c:

Nic =
∑

n:yn=c

I(#ni > 0) (30)

Nc =
∑

n

I(yn = c) (31)

4.2 Form of the class posterior

We can derive an analytic expression for the posterior p(y|x) by using Bayes rule. Consider the multinomial
model. Let Xik = 1 if Xi = k, a 1-of-K encoding. Then the class conditional density can be written

p(x|Y = c, θ) =

D
∏

i=1

K
∏

k=1

θ
I(xi=k)
ick =

D
∏

i=1

K
∏

k=1

θxik

ick (32)
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Hence the class posterior becomes

p(Y = c|x, θ, π) =
p(x|y = c)p(y = c)

∑

c′ p(x|y = c′)p(y = c′)
(33)

=
exp[log p(x|y = c) + log p(y = c)]

∑

c′ exp[log p(x|y = c′) + log p(y = c′)]
(34)

=
exp [log πc +

∑

i

∑

k xik log θick]
∑

c′ exp [log πc′ +
∑

i

∑

k xik log θi,c′,k]
(35)

If we define

x′ = [1, x11, . . . , x1K , . . . , xD1, . . . , xDK ] (36)

βc = [log πc, log θ1c1, . . . , log θ1cK , . . . , log θDc1, . . . , log θDcK ] (37)

(so the state index k varies more rapidly than the dimension i), then

p(Y = c|x, β) =
exp[βT

c x′]
∑

c′ exp[βT
c′x′]

(38)

This is called a softmax distribution. We will discuss this more later.
In the case of binary features, K = 2, so things simplify as follows. Let θic1 = θic = p(Xi = 1|Y = c), so

θic2 = 1 − θic1. Also, let x′

i1 = 1 iff xi = 1 and x′

i2 = 1 iff xi = 0. Then we have

x′ = [1, I(x1 = 1), I(x1 = 0), . . . , I(xD = 1), I(xD = 0)] (39)

βc = [log πc, log θ1c, log(1 − θ1c), . . . , log θDc, log(1 − θDc)] (40)

In the case of two classes (Y ∈ {1, 2}), the expressions simplify as follows

p(Y = 1|x, θ) =
eβT

1
x′

eβT

1
x′

+ eβT

2
x′

(41)

=
1

1 + e(β2−β1)T x′
(42)

=
1

1 + ewT x′
(43)

= σ(wT x′) (44)

where we have defined w = β1 − β2 and σ(·) is the logistic or sigmoid function

σ(u) =
1

1 + e−u
(45)

We will study this more later.

5 Log-sum-exp trick

One practical issue that arises when applying generative classifiers is that p(~x|Y ) is often a very small number:
the probability of observing any particular high-dimensional vector is small, since we have

∑

~x p(~x|Y ) = 1.
This can lead to numerical underflow. When trying to compute

P (Y = c|~x) =
P (~x|Y = c)P (Y = c)

∑C
c′=1 P (~x|Y = c′)P (Y = c′)

(46)
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function s = logsumexp(b, dim)

% s = logsumexp(b) by Tom Minka

% Returns s(i) = log(sum(exp(b(:,i)))) while avoiding numerical underflow.

% s = logsumexp(b, dim) sums over dimension ’dim’ instead of summing over rows

if nargin < 2 % if 2nd argument is missing

dim = 1;

end

[B, junk] = max(b,[],dim);

dims = ones(1,ndims(b));

dims(dim) = size(b,dim);

b = b - repmat(B, dims);

s = B + log(sum(exp(b),dim));

i = find(~finite(B));

if ~isempty(i)

s(i) = B(i);

end

Figure 4: Matlab code for logsumexp.m.

one could take logs as follows:

bc
def
= log[P (~x|Y = c)P (Y = c)] (47)

log P (Y = c|~x) = bc − log

C
∑

c′=1

eb
c′ (48)

However, log
∑

c ebc will underflow, because ebc = P (~x, Y = c) is very small, by assumption. One should
therefore use the log-sum-exp trick:

log
∑

c

ebc = log

[

(
∑

c

ebc)e−BeB

]

(49)

= log

[

(
∑

c

ebc−B)eB

]

(50)

=

[

log(
∑

c

ebc−B)

]

+ B (51)

where B = maxc bc. For example,

log(e−120 + e−121) = log
(

e−120(e0 + e−1)
)

= log(e0 + e−1) − 120 (52)

See Figure 4 for some matlab code.
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